Calorimeter Simulations

Outline : Setup • Verification • Performance • Summary

Jin Huang Brookhaven National Lab

sPHENIX Calorimeters in Geant4

EM calorimeter

Inner hadron calorimeter

BaBar coil and cryostat.

Outer hadron calorimeter

(EMCal): 18 X₀ **SPACAL**

(inner HCal): $1 \lambda_0$ SS-Scint. sampling

Coil & Cryostat (BaBar): $1.4 X_{0}$

SS-Scint. sampling (outer HCal): $4 \lambda_0$

EMCal 20 M scint. fiber simulated in details Towers project towards IP Stainless steel SS310 Support box 2x2 2D projective **SPACAL** modules 2 cm pport box 10GeV, e+ SPACAL Tower SPACAL Tower w/ fibers illustrated Nov 9-10, 2015 sPHENIX Cost and Schedule Review

Simulation setup: HCal

- Setup
 - Tilted iron plate with scintillator inserted
 - Detailed magnet field map in detector
 - Variable tilt angle to optimize detector design
- Analysis: Geant4 hit → Scintillation light model → Tower readout → Digitization →
 Calibrated tower energy → Clustering/Track matching/Forming Jets

Verification of Simulation: EMCai

Verification of EMCal simulation using eRD1 2014 data VS sim using sPHENIX Geant4

eRD1 2014 test beam

- 1D projective tower in 3x6 block
- slightly different fiber with double cladding

Beam test data reproduced in simulation (4GeV shown, more in pre-CDR)

Verification of Simulation: HCal

- HCal Simulation tested against Apr 2014 sPHENIX Fermi-lab test beam (HCals alone, v1-design)
- Reasonably reproduced resolution
- New test beam Apr 2016 with full calorimeter system planned (EMCal + Inner Hcal + magnet gap + Outer HCal)

Occupancy in central Au+Au

- sPHENIX are designed to handle large background environment of central AuAu collisions
- Such background is simulated with HIJING → full detector in Geant4 → full analysis chain
- Folded into electron ID and jet projections via embedding

Performance: Single EM showers

PH*ENIX

Performance: Single EM showers

- dE/E < 14%/sqrt(E)+4% for photon (fit sPHENIX γ-jet goal)
- dE/E < 12%/sqrt(E) for electrons (fit EIC electron kine. goal)
- Good linearity

sPHENIX full detector single photon simulation

Physics Performance: electron-ID

- Critical driving factor for EMCal design: Upsilon electron ID & Triggering
- Baseline electron ID: satisfied scientific goal

Baseline EMCal performance + Baseline tracker performance → Satisfied the scientific goals

Performance: electron-ID in Au+Au

Updated and more detailed simulation show good safety margin on electron-ID performance on top of the baseline design (as required to reach Upsilon program physics goal)

Baseline performance, design goals

- Sum all scintillator energy
- 1D SPACAL material with hits grouped into 2D SPACAL towers

2D projective SPACAL

- Updated studies (Preliminary)
- Sum all hadron taking account of hadron ratio
- Full digitization (w/ Birk corrections)
- Full tracking with silicon opt.
- Fully implemented 2D SPACAL (tower/support structure)

1D projective SPACAL

- Updated studies (Preliminary)
- Sum all hadron taking account of hadron ratio
- Full digitization (w/ Birk corrections)
- Full tracking with silicon opt.
- Ideally towering (no-tower boarder, no enclosure structure)

Performance: Single Hadron showers

- Single pion shower studied with clusters of digitized towers (3x3 and 5x5 clusters), which is compared with ideal sum of Geant4 hit in scintillator (label G4Hits)
- Energy resolution satisfied design goal. Tails <= 10%

2.5% stat. in tails as expected from Gauss shape

Tilt angle optimization

- Performance not a strong function of tilt angle of Hcal iron plates
- Baseline design (4-crossing tilt angle) is a reasonable choice

Performance: Jets in central Au+Au

- Algorithm developed based on ATLAS and CMS heavy ion experience
- Good efficiency and purity
- Resolution/tails fit for unfolding jet spectrum
- Need to keep updated as detector design/performance evolves

Trigger Performance

- Most challenging is trigger in pp for rare Upsilon signal
- Simulated in trigger emulator with truncated ADC bits
- > 5000:1 rejection with 98% Upsilon efficiency
- <1kHz, easily fit Upsilon in the PHENIX DAQ bandwidth

Summary

- A detailed model of the sPHENIX calorimeter has been implemented in GEANT4 and used for design and performance studies
- Good agreement with v1 prototype test beam data
 - Simulation of v2 prototype coming in 2016 will guide detector design
- Calorimeter performance achieves the scientific goals
 - Continue work by the collaboration to update the physics performance plots with refined detector design and simulation

EXTRA INFORMATION

Depth dependency of EMCAL sampling fraction

- Difference between sampling fraction for outer and inner radius is 8% for 2-D projective SPACAL and 4% for 1-D projective version.
- Better presented in energy dependency of sampling fraction and in linearity
- Good linearity observed for both 1-D and 2-D projective designs

Is inner Hcal useful in e-ID?

Single particle 2/4/8 GeV shower in 2D proj. SPACAL @ eta=0

- Pion Rejection curve (pro1.beta5)
- Full digitization (w/ Birk corrections)
 Fully implemented 2D SPACAL

- Anti-proton Rejection curve (pro1.beta5)
- Full digitization (w/ Birk corrections)
 Fully implemented 2D SPACAL

Cluster in 1D/2D SPACAL

Single e- 8 GeV shower in 1D/2D proj. SPACAL @ eta=0.9-1.0

2D projective SPCAL Average cluster ~8 towers

CEMC Tower Energy Distribution 10 10 10 10 10 10 10 10 10

Polar Distance (Tower Width)

1D projective SPCAL Average cluster ~12+ towers

10

PHIENIX

Performance: electron-ID in p+p

Cut on E/p

Performance: electron-ID in p+p

- Baseline performance
- Sum all scintillator energy
 1D SPACAL material cut into 2D SPACAL towers
- Updated studies (Preliminary)
- Sum all hadron taking account of hadron ratio Full digitization (w/ Birk corrections)
 Fully implemented 2D SPACAL

PH**ENIX

Hcal Test beam 2014 FNAL

Nov 9-10, 2015 23

Hcal tile details

